Training Deeper Convolutional Networks with Deep Supervision
نویسندگان
چکیده
One of the most promising ways of improving the performance of deep convolutional neural networks is by increasing the number of convolutional layers. However, adding layers makes training more difficult and computationally expensive. In order to train deeper networks, we propose to add auxiliary supervision branches after certain intermediate layers during training. We formulate a simple rule of thumb to determine where these branches should be added. The resulting deeply supervised structure makes the training much easier and also produces better classification results on ImageNet and the recently released, larger MIT Places dataset.
منابع مشابه
Diving deeper into mentee networks
Modern computer vision is all about the possession of powerful image representations. Deeper and deeper convolutional neural networks have been built using larger and larger datasets and are made publicly available. A large swath of computer vision scientists use these pre-trained networks with varying degrees of successes in various tasks. Even though there is tremendous success in copying the...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملResidual CNDS
Convolutional Neural Networks nowadays are of tremendous importance for any image classification system. One of the most investigated methods to increase the accuracy of CNN is by increasing the depth of CNN. Increasing the depth by stacking more layers also increases the difficulty of training besides making it computationally expensive. Some research found that adding auxiliary forks after in...
متن کاملThe Shallow End: Empowering Shallower Deep-Convolutional Networks through Auxiliary Outputs
Convolutional neural networks (CNNs) with very deep architectures, such as the residual network (ResNet) [6], have shown encouraging results in various tasks in computer vision and machine learning. Their depth has been one of the key factors behind the great success of CNNs, with the gradient vanishing issue having been largely addressed by ResNet. However, there are other issues associated wi...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1505.02496 شماره
صفحات -
تاریخ انتشار 2015